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1 Introduction

CHAPTER

KXl (2) A control system is defined by following mathematical relationship
d’x  6dx
R— + [
a2 dt
Find the response of the system at t —»

+5x=12(1-e7)

(b) A function y(t) satisfies the following differential equation

dy(t
0 4y =50
Where 8(t) is delta function. Assuming zero initial condition and denoting unit step function by u(t).
Find y(t).
Solution:
(a) Taking LT on both sides
(s2 + 65+ 5) X(s) = 12[1_L}
S S+2
24
s+ 1)(s+5)X(s) =
( ) ( ) X(s) )
24
X(s) =
(<) S(s+1)(s+2)(s+5)
Response at t — e
Using final value theorem,
lim x(8) = im [sX(s)] ] _ jim sx24 _o4
e s>0 s—>0s(s+1)(s+2)(s+5)

(b) Taking Laplace transform on both sides
Y(s)[s+ 1] =1
Y(s)=
s+1

By taking inverse Laplace transform
y(t) = eu(l)
(a) The Laplace equation for the charging current, i(f) of a capacitor arranged in series with a resistance
is given by
sC
-E
1+ sRC (8)
The circuit is connected to a supply voltage of E. If E= 100V, R =2 MQ, C = 1 uF. Calculate the
initial value of the charging current.

I(s) =

(b) A series circuit consisting of resistance R and an inductance of L is connected to a d.c. supply
voltage of E. Derive an expression for the steady-state value of the current flowing in the circuit
using final value theorem.



Control Systems
POSTAL 4
MRDE ERSY Book packace FAUA Conventional Practice Sets 3

Solution:
(a) Since, E =100 v(1)
Taking Laplace Transform,  E = 100 (t) volts,
s

Substituting the given values,

i) = 1x10°%s 1100 _10°s 100
(2x10°x1x10%s+17) s 2s+1 s

Applying the initial value theorem,

i(0*) = lim i(t) = lim s I(s)

t—0 S— oo
-4 -4
i(0%) = lim s- 10" _ jim -10 =50 pA
S—o0 + 28 S—oo R,
S

(b) The differential equation relating the current i(t) flowing in the circuit and the input voltage E'is given by

E=R i(t)+Ld;—g) i
Taking Laplace transform of the equation yields, +f
E(s) = R1(s) + L[(sI(s) - i(0%))] R
Assume, i(0*) =0 E
. E(s) = RI(s) + Ls I(s) L
-+ Eis constant (d.c. voltage)
E o
E(s) = - RI(s) + Ls I(s)
E
19 = SR+sD
Applying the final value theorem,
o= 0 = Jmsrts= 22
i = E
SS Fl)

The impulse response of a system S, is given by y,(t) = 4e2. The step response of a system S, is given
by y,(1) = 2(1 - 73). The two systems are cascaded together without any interaction. Find response of
the cascaded system for unit ramp input.

Solution:
(a) Taking the Laplace transform of the response of S, we get
4
Y(s)= ——,
o) $+2
Xi(s) =1 ... (x(t) =8(t))
Y,(s) 4
Therefore, G(s)= 22 = Y.(s)=1
1(s) X(s) 512 [ Yi(s)=1]
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YA = < (xlD) = D)
_Y(s) .6 _ 6
Thus. Gele) = xzz(s) "~ s(s+3) 5 543
(b) The transfer function of the cascaded system is
3 : 24
Gl = Gl = o673

;
The Laplace transform of unit ramp is R(s) = 2 Therefore,

G(s) = %
Qg)= 24 1
(s+2)(s+3) &
_A B.C . D
= —2+—+_+_
s S s+2 s+3
A= _ 24 =4
(s+2)(s+3)|,_0
ar o
B= %I:S C(S):|S:O
_ﬂ{ 24 }z_ 24(2s + 5) |
" sl (s+2s+3))  (s+2%s+97,
- _10
3
24
=6
C= Ps+3)|,__,
24 :_§
D=Ps+2)),_, 3

c i_Es+i_8 -3t
6= 27 3% 51273
Taking inverse Laplace transform.

Therefore, o) = 4t- %u(t) +6e7 - 26’3[

MmMBDE ERSYH
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m A torque TN-m is applied to a shaft having a moment of inertia J and coefficient of viscous friction of
f produces an angular shift of 6 radius. Obtain the transfer function in relation to 6 and T.

Solution:
The equation for the system is given by
Jd*0 . de
= +f— (1
ar?adt ()
Assuming initial conditions as zero and taking the Laplace transform on both sides of equation (1), the following
equations is obtained,

T

T(s) = Js? 0(s) + s 6(s)

1(s) = s(Js + 1)) 0(s) (2
From equation (2), the required transfer function is obtained below,
6(s) 1

T(s) ~ s(Js+f)

The pole-zero configuration of a transfer function is given below. The value of the transfer function as
s = 1 is found to be 3.2. Determine the transfer function and gain factor K.

+jw

o 4 3 2 0 +o

Solution:
The transfer function has three poles and one zero therefore, the transfer function consists of one termin the
numerator and three terms in the denominator.
Poles are locatedat s =0, s=-2, s =4
Zeros are located at s = -3

The transfer function, G(s) = _ Kis+3)
s(s+2)(s+4)
Itis given that at, s =1, G(s) = 3.2
= 32- 2 ko
15
12(s+3)
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